SESQUITERPENE ESTERS AND SESQUITERPENE-COUMARIN ETHERS FROM FERULA JAESKEANA

T. K. RAZDAN*, B. QADRI, M. A. QURISHI, M. A. KHUROO and P. K. KACHROO

Phytochemistry Division, Centre of Research for Development, University of Kashmir, Naseem Bagh, Srinagar-190 006, India

(Received in revised form 24 May 1989)

Key Word Index—Ferula jaeskeana; Umbelliferae; sesquiterpene alcohol esters; sesquiterpene-coumarin ethers.

Abstract—Five new sesquiterpene esters, together with the known esters of jaeskeanadiol, were isolated and characterized from the roots of *Ferula jaeskeana*. Two sesquiterpene-coumarin ethers were isolated for the first time from this plant.

INTRODUCTION

The genus Ferula is well documented as a source of sesquiterpene alcohol esters, most of which are aromatic esters of jaeskeanadiol. This sesquiterpene was first isolated and stereochemically characterized [1], as a free alcohol, from F. jaeskeana. The salicyloyl and angeloyl esters of this alcohol, together with 3-hydroxy-4,5-methylene-dioxypropiophenone, were reported from F. elaeochytis [2]. A new carotane- γ -lactone derivative has recently been isolated from F. jaeskeana [3]. There are several reports [4–8] on the presence of sesquiterpene-coumarin ethers, mostly derived from umbelliferone, in some species of the genus.

A reinvestigation of the chemistry of the roots of *F. jaeskeana* afforded five new sesquiterpene alcohol esters, designated as jaeskeanin (1), ferutinone (2), jaeskeanidin (3), ferutinianin (4) and angeloyl ferutinianin (5), in addition to the five known aromatic esters of jaeskeanadiol. Also two known sesquiterpene-coumarin ethers were isolated, for the first time, from these roots.

RESULTS AND DISCUSSION

Extensive column chromatography and TLC of the ethyl acetate extract of the roots of Ferula jaeskeana afforded 12 compounds which were characterized mainly by spectroscopic methods, including off-resonance and decoupled ¹³C NMR, some chemical transformations and comparison of the spectral data with literature [3, 9–12]. The UV, IR and ¹H NMR of the compounds showed that all, except one compound, carried an aromatic mojety.

The resemblances in the spectral patterns of compounds 1–10 suggested that they were structurally related with the differences residing in the nature or the position of their functional groups. The compounds were shown to be related to jaeskeanadiol (10) by the characteristic upfield methyl doublets in the ¹H NMR spectra centred at $\delta 0.83$ –0.85 and 0.95–0.97 (J=7 Hz, H-13 and H-14). The ¹H NMR spectra also suggested that like jaeskeana-

diol, all the compounds carried a hydroxyl at C-4. The IR and $^{13}\mathrm{C}$ NMR data of compounds 1–9 revealed the presence of an ester function, δ_C 168.2–168.9, which was placed at the usual C-6 position on the basis of the chemical shift and multiplicity of the carbinylic proton, $\delta 5.32-5.50$ (1H, t, J=3, 10 Hz). The $^1\mathrm{H}$ NMR spectra of compounds 2–10 contained the signal due to a vinylic proton at $\delta 5.56$ (1H, t, J=6.5-7 Hz, H-9) showing the presence of a trisubstituted double bond as in compound 10. This was further confirmed by the $^{13}\mathrm{C}$ NMR data (Table 1) of compounds 2–5. Further information about the structures of the compounds was derived from a detailed study of their $^1\mathrm{H}$ NMR and mass spectra.

Compound 1, [M]⁺ at m/z 374.1976, $C_{22}H_{30}O_5$, was shown to possess an epoxy function IR v_{max}^{KBT} cm⁻¹:3040, 1250, 870. Its ¹H NMR spectrum contained no signal due to the vinylic proton. Instead, a single proton resonance signal at $\delta 3.39$ (dd, J = 9.8, 6 Hz) suggested the presence of an epoxy function situated, most probably, between C-8 and C-9. This was substantiated by the small downfield shift of the resonance signal due to H-11 to δ 1.36, as compared to 10, and the 13 C NMR signals at $\delta_{\rm C}$ 57.2 (s) and 58.2 (d). In the downfield region, the ¹H NMR spectrum of the compound accounted for only four aromatic protons. The mass spectrum of the compound showed the base peak at m/z 121, due to the ester moiety and a prominent peak at m/z 137, indicating that the aromatic moiety carried only one hydroxyl. The chemical shift and multiplicity of aromatic protons suggested that compound 1 carried a p-hydroxybenzoic acid moiety. Other prominent peaks in the MS were observed at m/z 356, 331, 253, 237, 236 and 191. To confirm the presence of the epoxy function, 1 was treated with boron trifluoride-ethereate to yield a mixture from which the major product was recovered by column chromatography. It was directly acetylated with pyridine-acetic anhydride, resulting in the formation of two products, the major being a diacetate (12), in which the acetoxyls, $\delta 2.03$ and 2.05 (3H each, s), were shown to be secondary in nature by the presence of the carbinylic proton signals at δ 5.10 (1H, t, J = 3, 10 Hz, H-6) and $\delta 4.16$ (1H, br q, J = 10, 3 Hz, H-9). The compound was thus characterized as 8,9-epoxyferutinin. The compound is reported for the first time in nature.

^{*}Author to whom correspondence should be addressed.

Compound 2, [M]⁺ at m/z 372.1969, $C_{22}H_{28}O_5$, exhibited IR absorptions at $v_{\rm max}^{\rm KBr}$ cm⁻¹:1685 and 1705, suggesting the presence of two carbonyls, one of which was probably a ring carbonyl. Its ¹H NMR spectrum contained a two proton broad doublet at $\delta 2.62$ (J=10 Hz) due to the methylene protons adjacent to the carbonyl group. The ¹³C NMR signals at δ_C 168.3 and 217.3 confirmed the presence of an ester and a ring carbonyl in the compound. In the downfield region, the ¹H NMR spectrum accounted for four protons of the p-hydroxybenzoic acid moiety. Its presence in the compound was further confirmed by the mass spectrum of 2 which contained the base peak at m/z 121 and a prominent peak at m/z 137.

As the resonance signal due to the C-15 methyl of the compound was downfield at δ 1.91 and there was no observed shift in the resonance signals of the vinylic and the ester carbinylic proton, as compared to ferutinin (7) [11], the position of the carbonyl was fixed at C-2. On reduction with lithium aluminium hydride and subsequent acetylation compound 2 formed a hydroxy diacetate (11), IR $v_{\text{max}}^{\text{KBr}}$ cm⁻¹:3410 (OH), 1710, 1720 (ester carbonyls), in which the acetoxyls at δ 2.03 and 2.05 (3H each, s), were shown to be secondary in nature by the carbinylic proton signals at δ 4.90 (1H, m, H-2) and 5.12 (1H, t, J=10, 3 Hz, H-6). The compound was thus identified as ferutinin-2-one.

14

Compound 3 [M]⁺ at m/z 386.2094, $C_{23}H_{30}O_5$, in its ¹H NMR revealed a two proton singlet at δ 6.08 and only three aromatic proton signals, in addition to other signals exhibited by compound 7. This indicated the presence of a methylenedioxy group, δ_C 100.5 (-O-CH₂-O-), in the acylium moiety which was confirmed by the base peak at m/z 151 and the prominent peak at m/z 167, in the mass spectrum of the compound. The chemical shift, multiplicity and coupling constants of the aromatic protons (see Experimental) revealed the presence of 3',4'-methylenedioxybenzoic acid moiety in the compound. On hydrolysis, with 5% aq. potassium hydroxide, compound 3 gave jaeskeanadiol (10).

Compound 4, [M]⁺ at m/z 374, 1979, C₂₂H₃₀O₅, showed a close resemblance to the compound 3 in its

upfield ¹H NMR region. In the downfield region, the spectrum accounted for only three aromatic protons. The mass spectrum of the compound contained the base peak at m/z 137 and a prominent peak at m/z 153, which together with the multiplicity and coupling constant of the aromatic proton resonance signals confirmed the presence of 3',4'-dihydroxybenzoic acid moiety in 4. The compound on heating with acetone-potassium carbonate gave compound 3, thus confirming that 4 was the 3',4'-dihydroxybenzoic acid ester of 10.

Compound 5, [M]⁺ at m/z 472.4795, $C_{27}H_{36}O_7$, was shown to be a diester, IR_{max}^{KBr} cm⁻¹:1710, 1730. Its ¹H NMR spectrum contained all the signals exhibited by compound 4 with additional signals at δ 2.00 and 2.04 (3H) each, s), and 6.13 (1H, q, J = 7.5, 7.5 Hz) corresponding to an angeloyl moiety. The carbinylic proton geminal to the angeloyl group resonated at $\delta 4.50$ (1H, m). The presence of the angeloyl group was confirmed by the strong MS peak at m/z 83, due to the angelate acylium ion. The MS exhibited a base peak fragment at m/z 137 with a prominent peak at m/z 153, due to the 3",4"-dihydroxybenzoate acylium ion. The downfield chemical shift of the C-15 methyl resonance signal, $\delta 1.57$ (3H, s), together with the absence of a shift in the vinylic and the ester carbinylic proton signals fixed the position of the angelate function at C-2. The ¹³CNMR data (Table 1) agreed well with structure 5.

Compounds 6-10 were characterized as teferidine (6), ferutinin (7), jaeskeanadiol salicylate (8), jaeskeanadiol

angelate (9) and jaeskeanadiol (10) by comparing their spectral data with the literature [3, 8-12].

Compounds 13 and 14 were found to be coumarins by their colour reaction with alkaline hydroxylamine followed by ferric chloride [13], and their UV and IR absorptions [14]. The downfield $^1\mathrm{H}$ NMR spectral patterns of the compounds were identical. The spectra exhibited two doublets near $\delta 6.33$ and 7.59 (J=9.5 Hz) due to H-2 and H-3, and a singlet near $\delta 6.65$, due to H-5 suggesting that the compounds were 6.7,8-trisubstituted coumarins. The presence of two methoxyls in both the compounds was evident from the resonance signals close to $\delta 3.87$ and 4.00 (3H, each, s). The information regarding the sesquiterpene moieties was gathered from a detailed study of the $^1\mathrm{H}$ NMR and MS of the compounds and was substantiated by $^{13}\mathrm{C}$ NMR.

Compound 13, [M]⁺ at m/z 442.2360, $C_{26}H_{34}O_{6}$, in its ¹H NMR spectrum showed the presence of two trisubstituted double bonds, $\delta 5.54$ (1H, brt, J=7 Hz, H-13) and 5.13 (1H, brt, J=7.5 Hz, H-17), an oxymethylene group, $\delta 4.66$ (2H, ABq, J=7 Hz), and two vinylic methyls, $\delta 1.69$ and 1.60 (3H each s, H-23 and H-24). The spectrum contained a six proton multiplet at $\delta 2.00-2.12$, attributable to the allylic methylene protons, and two methyl singlets at $\delta 1.25$ and 1.29. A single proton triplet at $\delta 2.69$ (J=7 Hz) could be assigned to a proton of an epoxide ring. The mass spectrum contained the base peak at m/z 222 with prominent peaks at m/z 220 and 205 indicating that the ether-O-C(aryl) bond was cleaved followed by

Table 1. ¹³C NMR spectral data of compounds 1–5 and 10 (δ_C : ppm)

С	1	2	3	4	5	10
1	45.3	43.2	45.2	45.2	43.7	45.2
2	32.8	217.3	32.3	32.4	75.5	32.3
3	41.2	40.3	42.1	42.2	40.3	42.1
4	87.2	87.5	87.5	87.5	87.5	87.1
5	37.3	36.2	36.1	36.2	36.1	36.1
6	79.3	79.3	79.8	79.8	79.2	67.9
7	39.2	42.4	42.2	42.2	43.0	43.0
8	57.2	133.9	133.6	133.6	133.4	133.6
9	58.2	129.4	129.3	129.3	128.2	129.1
10	38.1	41.8	41.2	41.4	40.3	41.2
11	29.1	29.7	29.3	29.3	29.2	27.7
12	61.9	61.9	61.7	61.7	61.6	61.9
13	17.2	17.2	17.3	17.2	17.4	17.2
14	18.4	18.4	18.4	18.5	18.5	18.4
15	19.7	29.9	19.8	19.8	18.2	19.8
1	147.2	147.2	147.2	147.0	147.0	_
2	128.7	128.7	112.2	116.2	116.2	_
3	109.5	109.5	132.1	132.1	132.2	
4	147.1	147.1	149.1	133.2	133.2	_
5	113.2	113.2	101.8	104.1	104.1	_
6	127.9	127.9	101.8	101.8	101.8	
Ester $C = O$	168.2	168.3	168.9	168.7	168.7	_
O-CH₂-O	_	_	100.5	_		_
Ester $C = O$	_				165.8	
1"	_			_	126.3	_
2"				<u> </u>	141.1	-
3''					25.6	
4"					30.2	_

loss of a methyl radical. The upfield and chemical shift of the terminal methyl protons and of H-20 and H-21, as compared to those of isofraxidin [15, 16], indicated that the epoxide was at the terminal bond. The spectral evidence, including the ¹³C NMR shifts, were in agreement with those reported for epoxyfarnochrol [17].

Compound 14, $[M]^+$ at m/z 442.2358, $C_{26}H_{34}O_6$, in its ¹H NMR spectrum exhibited resonance signal for only one vinylic proton and a vinylic methyl at δ 5.54 (1H, br ill defined t, $W_{\frac{1}{2}} = 9$ Hz) and 1.80 (3H, s), respectively. The spectrum contained signals for three methyls at $\delta 0.92$, 1.00 and 1.04, a carbinylic proton at δ 3.36 (1H, t, J =9.4 Hz, H-21) and a -CH₂-O-group at δ 3.90 and 4.15 (2H, ABq, J = 10 Hz). The mass spectrum exhibited the base peak at m/z 222 which represented the coumarin moiety. The information on the terpenoid moiety was derived from the prominent peak at m/z 203. This confirmed that the fragmentation took place at the -O-C terpenic bond. The mass fragmentation revealed that the terpene moiety was bicyclic in nature. The ¹H NMR spectral pattern was characteristic of a drimanol [18]. The spectral data, including the ¹³C NMR, agreed well with that reported for drimatol-B [18] isolated from Achillea orchroleuca. This is the first report on the presence of isofraxidin ethers in the genus Ferula.

EXPERIMENTAL

¹H NMR:60, 90 or 250 MHz, CDCl₃, with TMS as int. standard; ¹³C NMR:62.89 MHz; HRMS at 70 eV.

The air-dried roots of the plant, collected fresh from Gulmarg (Voucher no: 003725), were extracted with hot EtOAc. The extract was exhaustively chromatographed on silica gel and AgNO₃-silica gel columns, using solvent gradients of petrol-C₆H₆, C₆H₆, C₆H₆-EtOAc. The fractions collected were monitored by TLC on silica gel G. The crystalline compounds were purified by crystallization.

Jaeskeanin (1). Mp 83–85°, [M]⁺ at m/z 374. 1970 (Calcd. for $C_{22}H_{30}O_5$ 374.4782). IR v_{max}^{KBr} cm⁻¹: 3400 (OH), 2960, 2855, 1705 (ester C=O), 3040, 1250, 870 (epoxy), 1645, 1450, 1270, 1150, 940, 705; ${}^{1}H$ NMR, (90 MHz) CDCl₃: $\delta 0.85$ (3H, d, J = 7 Hz, H-14), 0.94 (3H, d, J = 7 Hz, H-13), 1.36 (3H, br s, H-11), 1.87 (3H, s, H-15), 2.40 (2H, dd, J = 11, 9 Hz, H-10), 3.39 (1H, dd, J = 9.8, 6 Hz, H-9), 5.40 (1H, t, J = 3, 10 Hz, H-6), 6.8 (2H, d, J = 8 Hz, H-3' and H-5'), 7.8 (2H, d, J = 8 Hz, H-2' and H-6'). MS m/z:374 [M]⁺, 359 [M-Me]⁺, 356 [M-H₂O]⁺, 331 [M-C₃H₇]⁺, 253 [M-C₇H₅O₃]⁺, 237 [M-C₇H₅O₃]⁺, 236 [M-C₇H₆O₃]⁺, 137 [C₇H₅O₃]⁺, 121 (100%) [C₆H₅OCO]⁺, 193, 165, 53, 43 and 28.

Ferutionone (2). Mp 93–94°, [M]⁺ at m/z 372. 1969 (Calc. for $C_{22}H_{28}O_5$ 372.4624) IR $v_{\rm max}^{\rm KBr}$ cm⁻¹:3410 (OH), 1685 (C=O), 2960, 2860, 1705 (ester C=O), 1645, 1440, 1260, 1145, 940; ¹H NMR (60 MHz), CDCl₃: δ 0.85 (3H, d, J = 7 Hz, H-14), 0.95 (3H, d, J = 7 Hz, H-13), 1.54 (3H, s, H-11), 1.91 (3H, s, H-15), 2.62 (2H, br d, J = 10 Hz, H-3), 5.56 (1H, t, J = 6.5 Hz, H-9), 5.32 (1H, t, J = 10, 3 Hz, H-6), 6.8 (2H, d, J = 8 Hz, H-3' and H-7'), 7.8 (2H, d, J = 8 Hz, H-2' and H-6'): MS m/z: 372 [M]⁺, 354 [M - H₂O]⁺, 329 [M - C₃H₇]⁺ 234 [M - C₇H₅O₂]⁺ 191 [M - C₇H₅O₂ - C₃H₇]⁺, 163 [M - C₇H₅O₂ - C₃H₇ - CO]⁺, 137 [C₇H₅O₃]⁺, 135 [163 - CO]⁺ 121 (100%, [C₇H₅O₂])⁺, 107, 93, 77, 55, 28.

Jaeskeanidin (3). Mp 123–124°, [M] ⁺ at m/z 386.2094 (Calcd. for C₂₃H₃₀O₅ 386.4893). IR $v_{\text{max}}^{\text{KB}}$ cm ⁻¹:3405 (OH), 2900, 1680 (ester C=O), 1845, 1680, 1640, 1270, 1170, 720; ¹H NMR (90 MHz) CDCl₃: δ 0.85 (3H, d, J = 7 Hz, H-14), 0.94 (3H, d, J = 7 Hz, H-13), 1.16 (3H, br s, H-15), 1.91 (3H, s, H-11), 5.32 (1H, t, J = 10, 3 Hz, H-6) 5.56 (1H, t, J = 6, 5 Hz, H-9) 6.08 (2H, s, -CH₂-),

7.35 (1H, d, J = 3.5 Hz, H-2'), 7.68 (1H, t, J = 7, 2.5 Hz, H-6'), 8.02 (1H, d, J = 7 Hz, H-5'); MS m/z: 386 [M] + ,368 [M - H₂O] + ,353 [M - H₂O - Me] + ,343 [M - C₃H₇] + ,310 [M - H₂O - C₃H₇ - Me] + ,161 [310 - C₈H₅O₃] + ,149 (100%) [C₈H₅O₃] + ,121,119, 91, 28.

Ferutinianin (4). Mp 193–195°, M⁺ at m/z 374.1979 (Calcd. for $C_{22}H_{30}O_5$ 374.4782). IR $v_{\rm max}^{\rm KBr}$ cm⁻¹:3410 (OH), 2960, 2860, 1705, 1645, 1450, 1270, 1150, 940. UV $\lambda_{\rm max}^{\rm EOH}$ nm: 275 (Sh), 260, 240, 210; ¹H NMR (250 MHz) CDCl₃: δ 0.83 (3H, d, J = 7 Hz, H-13), 0.97 (3H, d, J = 7 Hz, H-14), 1.12 (3H, s, H-15), 1.89 (3H, s, H-11), 5.32 (1H, t, J = 10, 3 Hz, H-6), 5.56 (1H, t, J = 7 Hz, H-9), 7.20 (1H, d, J = 8 Hz, H-5), 7.9 (2H, d, J = 8 Hz, H-2', H-6'), 4.98 (3H, br s, exch.D₂O, 3 × OH); MS m/z: 374 [M]⁺, 356 [M - H₂O]⁺, 331 [M - C₃H₇-H₂O]⁺, 219 [M - C₇H₅O₃ - H₂O]⁺, 193 [M - C₇H₅O₃]⁺, 195 [C₇H₅O₄]⁺, 137 [C₇H₅O₃]⁺, 109 [C₇H₅O₂]⁺, 55, 43, 28.

Angeloylferutinianin (5). Mp $210-212^{\circ}$, M⁺ at m/z 472.4795 (Calcd, for $C_{27}H_{36}O_7$, 472.5799). UV λ_{max}^{EiOH} nm: 280 (Sh.), 260, 240; IR $v_{\text{max}}^{\text{KBr}}$ cm⁻¹:3410, 3425 (OH), 2960, 2860, 1730 (ester C O), 1710 (ester C=O) 1645, 1440, 1270, 1150, 940 and 820; ¹H NMR (250 MHz) CDCl₃: δ 0.85 (3H, d, J = 7 Hz, H-13), 0.97 (3H, d, J = 7 Hz, H-14), 1.57 (3H, s, H-15), 1.91 (3H, s, H-11), 2.00(3H, s, H-4''), 2.04 (3H, s, H-5''), 2.20 (1H, dd, J = 10 Hz, H-5), 2.45(2H, dd, J = 9.4 Hz, H-3), 4.50 (1H, m, H-2), 5.32 (1H, t, J = 10),3 Hz, H-6), 5.56 (1H, t, J = 6.5 Hz, H-9), 6.13 (1H, q, J = 7.5 Hz, H-3"), 7.20 (1H, d, J = 8 Hz, H-5"), 7.9 (2H, d, J = 8 Hz, H-2"). MS m/z: 472 [M]⁺, 454 [M-H₂O]⁺, 429 [M-C₃H₇]⁺, 389 [M $-C_5H_7O]^+$, 372 $[M-C_5H_7O_2]^+$, 335 $[M-C_7H_5O_3]^+$, 318 $[M-C_7H_5O_4]^+$, 248 $[M-C_7H_5O_4-C_5H_7O]^+$, 232 [M $-C_7H_5O_4-C_5H_7O_2]^+$ 214 $[M - C_7 H_5 O_4 - C_5 H_7 O_7]$ $-H_2O_1^+$, 153 $[C_7H_5O_4]^+$, 137 $[C_7H_5O_2]^+$, 109 $[C_7H_5O_2]^+$ $-CO]^+$, 99 $[C_5H_7O_2]^+$, 53, 28.

Teferidine (6). [M]⁺ at m/z 342.3580 (Calcd. for $C_{22}H_{30}O_3$, 342.5794). UV $\lambda_{\rm max}^{\rm McOH}$ nm: 280, 250; IR $\nu_{\rm max}^{\rm KBr}$ cm⁻¹: 3360 (OH), 2980, 2870, 1670, 1610, 1585, 1375, 1295, 1235, 1160, 1095, 950 and 750; ¹H NMR (60 MHz) CDCl₃: δ0.85 (1H, d, J = 7 Hz, H-14), 0.96 (1H, d, J = 7 Hz, H-13), 1.12 (3H, s, H-15), 1.85 (3H, s, H-11), 5.32 (1H, t, J = 10, 3 Hz, H-6), 5.56 (1H, t, J = 6.5 Hz, H-9), 7.46 (2H, t, J = 2, 9 Hz, H-2' and H-6'), 7.60 (1H, t, J = 2, 9 Hz, H-4'). 8.03 (2H, d, d = 2, 9 Hz, H-3' and H-5); MS m/z: 342 [M]⁺, 324 [M - H₂O]⁺, 299 [M - C₃H₇]⁺, 237 [M - C₇H₅O]⁺, 221 [M - C₇H₅O]⁺, 219 [M - H₂O - C₇H₅O]⁺, 194 [M - C₃H₇ - C₇H₅O]⁺, 121 [C₇H₅O₂]⁺, 105 [C₇H₅O]⁺, 77 [C₇H₅O - CO]⁺, 45, 28.

Ferutinin (7). M^+ at m/z 358.3798 (Calcd. for $C_{22}H_{30}O_4$, 358.4788). UV λ_{max}^{McOH} nm: 325, 280, 250; IR ν_{max}^{KBr} cm⁻¹: 3450 (OH), 3360 (OH), 2970, 2870, 1670, 1610, 1580, 1370, 1295, 1230, 1160 and 950; ¹H NMR (60 MHz) CDCl₃: δ 0.83 (3H, d, J = 7 Hz, H-14), 0.96 (1H, d, J = 7 Hz, H-13), 1.12 (3H, s, H-15), 1.85 (3H, s, H-11), 5.32 (1H, t, J = 10, 3 Hz, H-6), 5.56 (1H, t, J = 6, 5 Hz, H-9), 6.8 (2H, d, J = 8 Hz, H-2' and H-6'), 7.8 (2H, d, J = 8 Hz, H-3' and H-5'); MS m/z: 358 [M]⁺, 340 [M - H₂O]⁺, 315 [M - C₃H₇]⁺, 237 [M - C₇H₅O₂]⁺, 221 [M - C₇H₅O₃]⁺, 219 [M - C₇H₅O₂ - H₂O]⁺, 203 [M - C₇H₅O₃ - H₂O]⁺, 194 [M - C₇H₅O₂ - C₃H₇]⁺, 121 (100%) [C₇H₅O₂]⁺, 93 [C₇H₅O₂ - CO]⁺.

Jaeskeanadiol salicylate (8). Mp 210–213°, [M]⁺ at m/z 358.3825 (Calcd. for $C_{22}H_{30}O_4$, 358.4788). UV $\lambda_{\rm max}^{\rm Mes0}$ nm: 340, 280, 249, 220; $1\rm R\ v_{\rm max}^{\rm KBr}$ cm⁻¹: 3470 (OH), 3360 (OH), 2980, 2880, 1680, 1610. 1585, 1550, 1375, 1235. 1160, 950, 750 and 700; ¹H NMR (250 MHz) CDCl₃: δ0.85 (1H, d, J = 7 Hz, H-14), 0.96 (1H, d, J = 7 Hz, H-13), 1.12 (3H, s, H-15), 1.85 (3H, s, H-11), 5.32 (1H, t, J = 3, 10 Hz, H-6), 5.56 (1H, t, J = 6.5 Hz, H-9) 7.07 (1H, dt, J = 2, 8 Hz, H-4'), 7.52 (1H, dt, J = 2, 8 Hz, H-5'), 7.94 (1H, dd, J = 2, 9 Hz, H-3'), 8.65 (1H, dd, J = 2, 9 Hz, H-6'); MS m/z: 358 [M]⁺, 340 [M – H₂O]⁺, 315 [M – C_3H_7]⁺, 220 [M – $C_7H_5O_2$

 $-H_2O]^+$, 202 $[M-C_7H_5O_2-2\times H_2O]^+$, 137 $[C_7H_5O_3-1]^+$, 121 $[C_7H_5O_2]^+$.

Jaeskeanadiol angelate (9). Oil, molecular ion peak not observed, but a peak at m/z 277 corresponding to $[M-C_3H_7]^+$ present. IR $\nu_{\rm max}^{\rm kBr}$ cm $^{-1}$: 3500 (OH), 2960, 2860, 1705 (ester C = O), 1645, 1450, 1270, 1150, 1030 and 940; 1H NMR (90 MHz): CDCl $_3$: δ 0.85 (3H, d, J = 7 Hz, H-13), 0.96 (3H, d, J = 7 Hz, H-14), 1.12 (3H, s, H-15), 1.85 (3H, s, H-11), 2.00 (3H, s, H-4'), 2.04 (3H, s, H-3'), 5.32 (1H, t, J = 3, 10 Hz, H-6), 5.56 (1H, t, J = 6.5 Hz, H-9'), 6.13 (1H, dq, J = 7.5 Hz, H-2'); MS m/z 277 $[M-C_3H_7]^+$, 220 $[M-C_5H_7O-H_2O]^+$, 202 $[M-C_5H_7O-2\times H_2O]^+$, 177 $[M-C_3H_7-H_2O]^+$, 83 $[C_5H_7O]^+$.

Jaeskeanadiol (10). [M]⁺ at m/z 238, $C_{15}H_{26}O_2$. IR $v_{\rm max}^{\rm RBr}$ cm⁻¹:3500 (OH), 1270 and 940; ¹H NMR (60 MHz) CDCl₃: δ0.85 (3H, d, J=7 Hz, H-13), 0.96 (3H, d, J=7 Hz, H-14), 1.12 (3H, s, H-15), 1.85 (3H, s, H-11), 3.92 (1H, t, J=3, 10 Hz, H-6), 5.56 (1H, t, J=6.5 Hz, H-9); MS m/z:238 [M]⁺, 220 [M $-H_2O$]⁺, 202 [M $-2 \times H_2O$]⁺, 177 [M $-C_3H_7-H_2O$]⁺.

Reduction and acetylation of 2. Compound 2 (0.03 g) in 15 ml Et₂O was treated with 0.01 g LiAlH₄ at room temp. After usual work-up an oily product was recovered with Et2O and subjected to acetylation with Ac₂O-pyridine, at room temp. After removing the pyridine the product was recovered with EtOAc. TLC showed it to be a mixture of 4 compounds. The mixture was chromatographed over silica gel when petrol-C₆H₆ (7:3) afforded a major product 11 (0.020 g) [M]⁺ at m/z 322.4025, $C_{19}H_{30}O_4$, $IR \nu_{max}^{KBr}$ cm⁻¹:3410 (OH), 1730, 1720 (ester carbonyls); ¹H NMR (60 MHz): CDCl₃: δ 0.85 (3H, d, J = 7 Hz, H-13), 0.96 (3H, d, J = 7 Hz, H-14), 1.36 (3H, s, H-15), 1.85 (3H, s, H-11), 2.03 (3H, s, OAc), 2.05 (3H, s, OAc), 4.90 (1H, m, H-2), 5.12 (1H, t, J = 10.3 Hz, H-6) 5.56 (1H, t, J = 6.5 Hz, H-9); MS m/z: 322 $[M]^+$, 304 $[M-H_2O]^+$, 279 $[M-C_3H_7]^+$ 262 $[M-HOAc]^+$, 202 (100%), $[M-2 \times HOAc]^+$, 184 $[M-2 \times HOAc-H_2O]^+$, 166 $[M-2\times HOAc-2\times H_2O]^+$, 144 $[M-2 \times HOAc]$ $-C_3H_7]^+$.

Hydrolysis of 1. Compound 1 (0.25 g) in Et₂O was treated with BF3-ethereate, at room temp. After allowing the reaction mixture to stand overnight, the product was treated with H2O and isolated with EtOAc. The mixture thus obtained, on chromatography over silica gel afforded a major product which was acetylated with pyridine -Ac₂O, at room temp. for 36 hr. After usual work-up a binary mixture was recovered. The mixture was resolved by prep. TLC on silica gel (C₆H₆-EtOAc, 7:3) to afford the major product 12, $[M]^+$ at m/z 356.4530 (Calcd for $C_{19}H_{32}O_6$, 356.4601). ¹H NMR (60 MHz) CDCl₃: δ 0.85 (3H, d, J = 7 Hz, H-13), 1.00 (3H, d, J = 7 Hz, H-14), 1.12 (3H, s, H-15), 1.43 (3H, s, H-11), 2.03 (3H, s, OAc), 2.05 (3H, s, OAc), 2.89 (2H, br, s, exch, D_2O , 2 × OH), 4.16 (1H, br q, J = 10, 3 Hz, H-9), 5.10 (1H, t, J = 10, 3 Hz, H-6); MS: m/s at 356 [M]⁺, 338 [M $-H_2O$]⁺, 320 [M $-2 \times H_2O$]⁺, 297 [M $-H_2O - 2 \times HOAc$]⁺, $176 [M-H_2O-2 \times HOAc-C_3H_7]^+, 43 (100\%) [C_3H_7]^+$

Epoxyfarnachrol (13). [M]⁺ at m/z 442.2360 (Calcd for C₂₆H₃₄O₆ 442.5536), [α]²⁰_D -9° (Me₂CO; c 0.7). IR v_{max}^{KBR} cm⁻¹:2960, 2940, 1745, 1560, 1485, 1420, 1375, 1290, 1195, 1125, 1080, 940 and 820; UV λ_{max}^{MeOH} nm:339 (Sh), 297, 226, 207; ¹H NMR (250 MHz) CDCl₃:δ1.25 (3H, s, H-25), 1.29 (3H, s, H-26), 1.58 (2H, m, H-20), 1.60 (3H, br s, H-24), 1.69 (3H, br s H-23), 2.00–2.12 (6H, m, H-19, H-16 and H-15), 2.69 (1H, t, t) = 7 Hz, H-21), 3.88 (3H, s, OMe), 4.02 (3H, s, OMe), 4.66 (2H, ABq, t) = 7 Hz, H-12), 5.13 (1H, t, t) = 7.5 Hz, H-17), 5.54 (1H, t, t) = 7 Hz, H-13), 6.33 (1H, t) = 9.5 Hz, H-2), 6.66 (1H, t), H-5). 7.62 (1H, t) = 9.5 Hz, H-3); MS m/z:442 [M]⁺, 223, 222 (100%), 221, 220, 215, 207, 205, 173, 149, 128, 199, 115, 109, 107, 105, 97, 93; ¹³C NMR (CDCl₃): δ_C 160.5 (C-1), 115.3 (C-2), 143.5 (C-3). 114.5 (C-4), 103.8 (C-5), 150.7 (C-6), 145.1 (C-7), 141.9 (C-8) 143.2 (C-9), 56.4 (C-10), 61.7 (C-11), 70.3 (C-12), 119.9 (C-13) 142.3 (C-14),

39.6 (C-15), 26.3 (C-16), 124.4 (C-17), 134.6 (C-18), 346 (C-19), 27.6 (C-20), 64.2 (C-21), 58.2 (C-22), 16.4 (C-23), 16.0 (C-24), 24.9 (C-25), 18.8 (C-26).

Drimatrol B (14). Mp 148-149° [lit. mp 145-146°]. [M] + at m/z 442.2350 (Calcd for C₂₆H₃₄O₆ 442.5556). UV $\lambda_{\rm max}^{\rm MeOH}$ nm 338 (sh) 297, 227, 207; IR $v_{\text{max}}^{\text{KBr}}$ cm⁻¹: 3630, 2930, 1740, 1555, 1455, 1430, 1290, 1040, 980 and 840; ¹H NMR (250 MHz) CDCl₃: δ 0.92 (3H, s, H-23), 1.00 (3H, s, H-24), 1.04 (3H, s, H-25), 1.80 (H-26), 3.36 (1H, t, J=9, 4 Hz, H-21), 3.90 and 4.15 (2H, ABq, J= 10 Hz, H-12), 2.00-2.15 (2H, m, H-16), 1.85 (1H, m, H-13), 3.87 (3H, s, OMe), 4.00 (3H, s, OMe) 5.54 (1H, br t, $W_2^1 = 9$ Hz, H-15), $6.6\overline{5}$ (1H, s, H-5), 7.59 (1H, d, J = 9.5 Hz, H-3), 6.34 (1H, d, J= 9.5 Hz, H-2); MS m/z: 442 [M]⁺, 223, 222 (100%), 221, 204, 203, 161, 147, 135, 133, 121, 109, 105, 95; 13 C NMR: $\delta_{\rm C}$ 160.4 (C-1), 115.2 (C-2), 143.3 (C-3), 114.5 (C-4), 104.1 (C-5), 150.5 (C-6), 145.4 (C-7), 141.7 (C-8), 143.2 (C-9), 56.3 (C-10), 61.8 (C-11), 73.4 (C-12), 55.7 (C-13), 131.6 (C-14), 123.1 (C-15), 23.7 (C-16), 42.5 (C-17), 35.8 (C-18), 34.0 (C-19), 27.6 (C-20), 79.4 (C-21), 38.7 (C-22), 22.6 (C-23), 21.7 (C-24), 15.2 (C-25), 27.9 (C-26).

Acknowledgements The authors are obliged to Prof. R. Rodriguez (University of Cadiz, Apartado), Prof. E. S. Waight (Imperial College of Science and Technology, London) and Dr K. L. Dhar and Dr S. K. Koul (R.R.L. Jammu) for spectral analysis. We are grateful to Dr S. Harkar for the extraction of the plant material and preliminary chromatography of the extract. Thanks are also due to the Director, Centre for Research for Development, University of Kashmir, for encouragement and for providing laboratory facilities.

REFERENCES

- Sriraman, M. C., Nagasampagi, B. A., Pandey, R. C. and Dev, S. (1973) Tetrahedron 29, 985.
- Miski, M., Ulubelen, A. and Mabry, T. J. (1983) Phytochemistry 22, 2231.
- 3. Rastogi, S. N. (1987) Phytochemistry 26, 449.
- 4. Perelson, M. E., Skylar Y. E. and Veselovoskya, M. V. (1977) Khim. Farm. Zh. 11, 78.
- Aminov, A. M. and Kasymova, S. S. (1977) Khim. Prir. Soedin. 2, 283.
- Kir'yalov, N. P. and Bukreeva, T. V. (1972) Khim. Prir. Soedin. 6, 798.
- Kir'yalov, N. P. and Bukreeva, T. V. (1972) Khim. Prir. Soedin, 5, 643.
- 8. Vadushen, V. V., Skylar, Y. E., Perelson, M. E., Moroz, M. D. and Pimenov, M. E. (1972) Khim. Prir. Soedin, 5, 669.
- 9. Saidkhodzhaev, A. I. and Nikonov. G. K. (1976) Khim Prir. Soedin 105.
- Khasanov, T. Kh., Saidkhodzhaev, A. I. and Nikonov, G. K. (1974) Khim. Prir. Soedin 528.
- 11. Saidkhodzhaev, A. I. and Nikonov, G. K. (1974) Khim. Prir. Soedin 526.
- Kamilov, Kh. M., Nikonov, G. K. and Sharakhimov, N. N. (1974) Khim. Prir. Soedin 527.
- Razdan, T. K., Qadri, B., Harkar, S. and Waight, E. S. (1987) *Phytochemistry* 26, 2063.
- 14. Lee, H. K. and Soine, T. O. (1969) J. Pharm. Sci. 6, 681.
- Greger, H., Hoferm, O. and Nikiforov, A. (1982) J. Nat. Prod. 45, 455.
- Greger, H., Haslinger, E. and Hofer, O. (1982) Monatsch Chem. 113, 375.
- Greger, H., Hofer, O. and Robien, W. (1983) J. Nat. Prod. 46, 510
- Greger, H., Hofer, O. and Nikiforov, A. (1982) J. Nat. Prod. 45, 455.